Based on a newly discovered phenomenon!!

- A general activated carbon has the peculiar characteristics to be able to collect 99mTc preferentially and completely from highly concentrated LSA-Mo(99Mo) solution.

Kaken 99Mo-99mTc Process®

for Globally Local 99Mo-99mTc production on demand by combination with TcMM and neighboring reactor or Linac
OUTLINE

Extraction technique of 99mTc extraction from 99Mo was examined by the newly developed Technetium Master Milker (TcMM) method. For the production of 99Mo here, the 98Mo(n,g) reaction using neutrons generated by a nuclear reactor and/or the 100Mo(g,n) reaction using bremsstrahlung photons generated by an electron linear accelerator were utilized respectively.

By this study, it has been proved that a highly concentrated pure pertechnetate (99mTeO$_4^-$) in saline can be separated and collected through the TcMM method.

Procedurally, the TcMM method utilizes combined activated carbon (AC) and alumina (AL), with or without ion exchange resin (IER). The AC-AL process has used a highly concentrated Mo with low specific and large activity 99Mo of 3.0x1012 Bq generated by the irradiation of neutrons in the nuclear reactor, JRR-3 in Japan Atomic Energy Agency.

It was found that a chemical yield and purity of the produced 99mTc are 90-95% and 6N (99.9999 %), respectively. Therefore, the TcMM method is able to generate a high quality 99mTeO$_4^-$ that is eligible to obtain the permission of pharmaceutical affairs law.

It is revealed that the TcMM method has the practical capability of the efficient 99mTc generator with a wide range from small amount level (kBq) to large level (TBq) per batch, furthermore, the main parts consisted of the AC-AL or AC-IER-AL columns system are simple and are able to collect pure 99mTc within 30 min automatically.

Conclusively, 99mTc can be produced domestically and further locally on demand by the combination of the TcMM method and 99Mo with a low specific activity (produced from the 98Mo(n,g) and/or 100Mo(g,n) reaction, using a neighboring reactor and/or an electron linear accelerator without enriched uranium (HEU and LEU)), and furthermore, the advanced use for diagnosis can be available everywhere in the world.

[TcMM Process]

Step(1) Dissolution of irradiated natMoO$_3$ pellets

Irradiated natMoO$_3$ pellets are dissolved in a molar equivalent NaOH solution, and the resulting Na$_2$MoO$_4$ solution with the neutral pH can obtain.

Step(2) Adsorption of 99mTc in AC

Using the TcMM system, Na$_2$MoO$_4$ solution (max. 1000 mL) is poured into AC column at a flow velocity of 100 mL/min for 10 min. to adsorb 99mTc on the AC column. A trace amount 99mTc is preferentially and completely adsorbed in the AC column.

Step(3) Removal of Mo contaminants from AC

Mo(99Mo) and other nuclides contaminants in AC is removed by flowing H$_2$O, next 6.0 M NaOH (30 mL) and finally H$_2$O.

Step(4) Elution of 99mTc from AC

In order to elute 99mTc collected into AC column, H$_2$O is run through the AC column, then the whole quantity of 99mTc adsorbed on AC column can be eluted.

Step(5) Removal of Na-ion in alkaline 99mTc eluted

99mTc solution obtained in step(4) above is alkaline solution is flowed through to the strong acid type of ion exchange resin (IER) and the activated alumina (AL). By this procedure, Na-ion in eluted 99mTc solution can be taken hold in the IER column and 99mTc can be caught in the AL column. If the IER column is not used, the TcMM process can also be operated by the combination of AC-AL columns system.

Step(6) Elution of 99mTc

Finally, a highly pure 99mTc can be recovered from the AL column by flowing 10-20 mL of saline (0.9% NaCl solution), and the resulting 99mTc can be concentrated 50-100 folds from the initial Mo(99Mo) solution.
Performance of TcMM process for generating 99mTc from (γ,n) & (n,γ) LSA-99Mo

Producing process of 99mTc
- Equivalent 99mTc recovery rate in kBq-10TBq
- Recovery of 99mTc: 90–95%
- Concentration of 99mTc solution: > 1Ci/mL
- Producing time: ≤ 30 min/run

Quality of 99mTc
- 99mTc collected in sterile saline
- Collected as 99mTcO$_4^-$ (pertechnetate)
- Endotoxin-inspection: negative
- Radiochemical purity: > 4N–7N
- By the labeling experiment using many kits, the target medicines are given with high radiochemical purity.

Waste for production
- Liquid waste: 250mL/run
- Solid waste: AC 4.5g/run, AL 6–12g/run, IER 5cc/run, and column casing

Sufficient performance for 99mTc generator!!
- Complete removing impurities such as accumulated 99mTc, generated radioactive Nb and other nuclides contaminates.
- Highly pure 99mTc (radiochemical purity: > 99.99%) is successfully separated with a chemical yield of 90% over.
- TcMM enables one to generate a high quality 99mTcO$_4^-$ (pertechnetate) available for obtaining permission of pharmaceutical affairs law.
- By using the TcMM system, a highly concentrated pure 99mTc of kBq–TBq from a low specific activity 99mMo can automatically be collected in a short time (< 30min.).
- 99mTc can also be utilized just a 99mTc

High purity High recovery

Contact to: tatemuna@kakenlabo.co.jp
Kaken 99Mo-99mTc Process

99Mo-99mTc Domestic & Local Production on demand

- **99Mo production [Reactor or Accelerator]**
 - Natural or Enriched isotope MoO$_3$ or Mo
 - [by Reactor] 99mMo(n,γ)99mMo
 - [by Linac] 100Mo(y,n)99mMo

- **Low Specific Activity 99Mo**
 - LSA-99mMo 0.1-1Ci/g(Mo)

- **99mTc Master Milker [TcMM]**
 - Concentration & purification of 99mTc by activated carbon (AC) & alumina (AL)
 - 99mTc milking performance:
 - kBq-10TBq within 30min.
 - Mo(99Mo) specific activity and concentration: without restriction.
 - 99mTc purity in saline: >6N
 - milked 99mTc concentration:
 - kBq-TBq/mL
 - 99mTc chemical form: TcO$_4^-$

Outline of Kaken tasks

Chemical and Instrumental Analysis
- Environmental analysis
- Physical analysis
- Ultra-trace analysis
- Inorganic and Organic analysis

Chemical Experiment and R&D support
- Chemical process development
- Material test and evaluation
- Functional material development

Radionuclides-related research and analysis
- Radioactivity analysis on environmental samples/Transitional surveys
- Test and technology based on radioisotopes
- Technology development with application of radioactive substances
- Radioactive waste reprocessing

Engineering Design and Manufacture
- Design & fabrication of original devices and equipment

Tritium(3H)/Li/Be Resource Recycle System for nuclear fusion

Head office/Mito Institute: 1044 Hori, Mito, Ibaraki 310-0903, Japan
TEL: +81-29-227-4485
FAX: +81-29-227-4082